investigator_user investigator user funding collaborators pending menu bell message arrow_up arrow_down filter layers globe marker add arrow close download edit facebook info linkedin minus plus save share search sort twitter remove user-plus user-minus
  • Project leads
  • Collaborators

Molecular Fluorescence-Guided Surgery Platform

Brian W Pogue

2 Collaborator(s)

Funding source

National Cancer Institute (NIH)
This Academic-Industrial Partnership (AIP) for the development and translation of molecularly-targeted optically-fluorescent imaging agents, GMP-produced for guiding surgical resection in phase 0 clinical trials. While recent advances in the technology for guiding surgical oncology will establish an efficient pipeline have been impressive, significant limitations remain in determining, intraoperatively, the biological margins of disease. Fluorescence-guided surgical resection based on protoporphyrin IX production in high-grade gliomas has highlighted the potential promise of the approach to the extent that intraoperative fluorescence imaging, with both red and infrared channels, is now available on state-of-the-art surgical microscopes manufactured by Leica and Zeiss. Despite these rapid advances, development of the molecular tracers that are required to guide surgical procedures has been lacking. The basis of this application and the underlying tenet of the proposed AIP are that a cost-effective, risk-diluted approach to and cost-effective testing contrast agent development and are needed in order to realize the promise of fluorescence-guidance during surgery. The testing will be carried out with end-points of surgical testing in phase 0 micro dosing studies signal detection and binding specificity being the primary outcomes from the phase 0 trials. Rapid testing is critical because most agents will not be successful, and we need a strategy to reduce the time, cost and risk required to quickly assess targeting efficacy in early human surgical trials. Creation of such a pipeline process stands to accelerate dramatically the paradigm shift to molecular-guided surgical oncology that will revolutionize both the procedures that are possible and the surgical outcomes that will result. The proposed AIP between Dartmouth (Engineering and Medical Schools), Affibody AB, and LI-COR brings together 3 partners who have the intellectual property (IP), expertise and infrastructure to develop, test and advance molecularly-targeted fluorescent tracers for surgical guidance. The first agent we will advance will be an affibody molecule (created and extensively characterized in animals by Affibody, AB, and currently undergoing nuclear imaging studies in humans) targeted to the epidermal growth factor receptor (EGFR) conjugated with a fluorescent dye (systematically developed by LI-COR for human use) with absorption and emission spectra in the near infrared. The compound will be developed and produced through peptide synthesis under GMP conditions, single administration toxicity testing in requisite animal models will be completed, and a first-in-human phase 0 dose escalation study will be pursued at Dartmouth under exploratory investigational new drug (eIND) approval from the FDA.

Related projects