investigator_user investigator user funding collaborators pending menu bell message arrow_up arrow_down filter layers globe marker add arrow close download edit facebook info linkedin minus plus save share search sort twitter remove user-plus user-minus
  • Project leads
  • Collaborators

Regulation of RNA processing on the mitochondrial surface by lipid signaling

Michael A. Frohman

1 Collaborator(s)

Funding source

National Institutes of Health (NIH)
Mitochondria, once viewed as the "simple" powerhouse of the cell, are increasingly recognized to be involved in many different cell biological processes that involve interaction with non-mitochondrial organelles such as the endoplasmic reticulum and plasma membrane. These interactions take place in part via machinery on the mitochondrial surface that generates and senses protein and lipid signals, which has been an area of focus for us in the context of mitochondrial dynamics (fusion) and changes in energetic in response to extracellular signaling events. Our recent work has uncovered a new role for mitochondria in a specialized form of RNA processing that appears to take place at the interface between the mitochondrial surface and juxtaposed RNA granules. More specifically, we have linked a signaling enzyme on the mitochondrial surface to the production of piRNAs, a third type of RNAi, in an electron-dense structure known as nuage that is similar to P-bodies. Using cell biological, in culture, and animal model approaches, we propose to study how lipid signaling at the mitochondrial surface promotes this newly identified physical and functional interaction between mitochondria and RNA-processing complexes via underlying mechanisms that potentially include kinesin-regulated trafficking of RNAs, processing granules and mitochondria on microtubules. Relevance: This initial story applies to a pathway that is critical for spermatogenesis, has relevance to male infertility, and offers opportunities fr a novel type of male contraceptive. However, other types of RNA recruitment to and processing at the mitochondrial surface are known and represent a broader context in which this newly identified pathway will likely be important, including in connection to mesenchymal stem cells, brain and cardiac function, and cancer.

Related projects